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We study density-dependent resource harvest patterns due to Bayesian foraging for
different distributions of resources. We first consider a forager with information about the
stochastic properties of its environment. In this case we show that when the number of food
items per patch follows a distribution from the exponential family, the density dependence is
given by the ratio o2/ of the distribution of number of food items per patch. Bayesian foraging
can therefore lead to positive (negative binomial distribution) or negative (binomial
distribution) density dependent resource harvest and even to density independent (Poisson
distribution) resource harvest, depending on the distribution of resources in the environment.
In a second stage we incorporate learning about the distribution of resources in the whole
environment. The mean of the distribution of number of food items per patch of a given
environment is learnt faster than the variance of the distribution. Learning occurs faster in

poorer than richer environments.

Different foraging theory models focus on different
aspects of the predator-prey interaction. A large body of
the literature concentrates in looking for “optimal”
foraging strategies, behaviors that will maximise expected
net energy intake during the foraging period in a number
of circumstances (see Stephens and Krebs, 1986; Lima
and Dill, 1990; Ylénen and Magnhagen, 1992 for
different reviews). Other models study the changes in
feeding efficiency in response to changes in resource den-
sity across patches (Holling, 1965; Charnov, 1976;
Green, 1988; Bernstein et al., 1991). This second aspect
has obvious links with predator—prey theory and popula-
tion dynamics and stability (see Murdoch and Oaten,
1975; Hassell, 1978; Comins and Hassell, 1979; Taylor,
1984), a connection that has been partially explored (e.g.,
Abrams, 1982, 1987; Sih, 1984; Green, 1990; Mitchell
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and Brown, 1990). However, no attempt has been made
to relate foraging under incomplete information with
predator-prey dynamics, despite early suggestions of its
importance (see Taylor, 1974; Murdoch and Oaten, 1975
for early accounts of the implications of learning in
predator—prey theory).

Much of current predator—prey (or parasitoid-host)
theory is concerned with spatial heterogeneity (Hassell
and May, 1974; Murdoch and Oaten, 1975; Murdoch
and Stewart-Oaten, 1989; Pacala et al, 1990; Rohani
et al., 1994). Consider for example a host population
distributed in n discrete patches, patch i containing 4,
hosts (i=1, ..., n). In order to understand the dynamics
of this system we must first know the relationship
between the number of hosts initially available in the
patch and the expected proportion of parasitised hosts at
the end of a given period (e.g., season). Most current
models (see Hassell, 1978; Taylor, 1984) use some simple
function, mainly chosen for mathematical tractability, to
link number of hosts with parasitism levels. Would the
predictions of these models change if the behaviour of
individual predators was taken into consideration?
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Hassell and May (1985) have made some progress in
this direction showing how the spatial distribution
of a predator could affect population stability. More
recent studies include individual-based approaches (see
DeAngelis and Gross, 1992; Wilson et al., 1993).

In this paper we study the relationship between the
environmental distribution of food items per patch and
the density-dependent patterns of resource harvesting by
a Bayesian forager. We first study a foraging strategy
which uses information gathered during patch exploita-
tion to decide when to leave the patch. In a second stage
we add the possibility of using the same information to
track environmental changes.

BAYESIAN FORAGING IN PATCHY
ENVIRONMENTS

The idea of using Bayesian statistics in the framework
of optimal foraging theory is originally due to Oaten
(1977). We will develop a particular case modelled by
Iwasa et al. (1981). The environment will consist of a set
of discrete patches, one patch containing k food items
with probability p, and separated from the others by
extensions of barren land. When in a patch, foragers
search for food items at random and the time required to
find one item is assumed to follow the distribution

Prob(Te[t, t+dt]) = Ake ** dt, (1)

where k is the number of food items in the patch at the
time of searching and A4 the searching efficiency of the
forager. Foragers can use Bayes’ theorem to calculate
r(n, t), the expected number of food items remaining in
the patch given that the patch has been exploited for a
time ¢ and n food items have been consumed during this
time. They are equipped with a foraging rule such that
they leave the patch when

r(n, 1)< Q, (2)

where the fixed quitting threshold Q will depend on the
richness of the environment, the distance between
patches, predation risk on the forager, and possibly other
factors. The method for calculating r(n, t) is given by
Iwasa et al. (1981). To apply the foraging rule described
by Eq. (2), the forager needs to know the probability that
a randomly selected patch contains k food items (for
k=0, 1, ...), since these probabilities enter the calculation
of r(n, t). It will also need to know the average distance
between patches to estimate the most suitable value of Q.
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Let p(N) be the probability that a given food item is
removed from a patch containing N items when the
forager encounters the patch. Let Ap(N)=p(N+1)—
p(N). When 4p(N)>0 the proportion of items con-
sumed is an increasing function of initial number of food
items and the foraging strategy results in positive density-
dependent resource harvesting. When Ap(N) <0 con-
sumption risk per item decreases with initial number of
food items and the foraging strategy leads to negative
density-dependent resource harvesting. When Ap(N)=0
resource harvest is independent of initial density. Finally,
resource harvest can be an increasing function of
resource density at low levels of concentration of food
items and decrease for higher densities. As we will show,
a Bayesian foraging strategy can lead to any of these four
scenarios depending on the environment in which the
forager lives. Equation (3) shows how to calculate p(N)

N—N,>

5 (3)

p(N>=E(

where N, is the number of food items left in the patch by
the forager and E(X) denotes the expectation of the
random variable X.

EXPONENTIAL FAMILY DISTRIBUTION
OF RESOURCES

Most unimodal discrete probability distributions can
be approximated by either a negative binomial, a
Poisson or a binomial distribution, all of them members
of the exponential family. Here we study the density
dependence of our Bayesian foraging strategy when the
distribution of resources in the environment belongs
to one of these families. The density dependence of a
foraging strategy is determined by the function relating
patch residence time to initial number of food items.
Patch residence time is in turn given by the solution of
Eq. (2). As shown by Iwasa et al. (1981), r(n,t) is a
decreasing function of ¢ for all values of n. The estimated
number of food items, however, can present discon-
tinuities when food is encountered. Let Ar(n, t)=
r(n+1,t)—r(n, t). If Ar(n,t)>0 for all n and ¢, each
item found in a patch will result in an increase in patch
residence time. Since richer patches are characterized by
a greater feeding rates (Eq. (1)), the condition
Ar(n, t) >0 will result in positive density-dependent
resource harvesting. Conversely, 4r(n, t) <0 will lead to
negative density dependence and Ar(n, 1) =0 to a fixed
exploitation time, density independent foraging rule.
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TABLE 1

Effect of Distribution of Food Items on the Density Dependence of a Bayesian Foraging Rule

Distribution of food items“ r(n, t)° Ar(n, t) Resource harvesting
Negative binomial
[ A4n—1 1\ o« )" A+n 1 >0 Positive
Pn= n I+ I+« ot 1 1 | density dependence
_ e _
o o
Poisson
B e—ulu —n o ) )
Pn= ' ue 0 Density independence
n!
Binomial
M\ . M—n —1 Negative
pn—<” > g1 -g" 1—gq 1—gq <0 density dependence
et"—=+1 et"—=+1
q q
Note. Symbols: negative binomial distribution: mean = Aa; variance = Ax(1 + «); Poisson distribution: mean = variance = x; binomial distribu-

tion: mean = Mgq; variance = Mq(1 — q); A = searching efficiency; ¢ = time interval.

“n=0.

® From (Iwasa et al. 1981).
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FIG. 1. Proportion of food items consumed (mean + SD) by a Bayesian forager as a function of the number of items initially in the patch in
an environment where the number of food items per patch was negative binomially distributed (a—c), Poisson distributed (d, ), or binomially dis-
tributed (f~h). Q is the quitting threshold.
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From the expressions of r(n, t) obtained by Iwasa et al.
(1981) we can easily calculate Ar(n, t) for the different
types of exponential distribution. These values are
summarised in Table I, which suggests that a Bayesian
foraging rule will lead to positive density-dependent
resource harvesting when the number of food items per
patch follows a negative binomial distribution, density
independent resource harvesting when the distribution of
patches is Poisson and negative density dependence for a
binomial distribution of food items per patch.

These predictions are confirmed by computer simula-
tions shown in Fig. 1. Each data point shows the mean of
1000 runs of a simulation in which the proportion of food
items consumed by a Bayesian forager with random
search were calculated for different environmental
parameters. The reason for the difference between binomial
and negative binomial distribution may be explained as
follows. Upon consumption of one item, one obtains two
pieces of information: (i) the patch was richer than it was
previously thought, but (ii) the patch has become worse
by the one item being eaten. When the number of food
items per patch are binomially distributed, the second
term is greater than the first one (in absolute value) and
the net gain of information is that there are probably less
food items left than there were thought to be before
capture. With a negative binomial distribution, the first
term is greater and the net effect is an expected increase in
the number of food items left, while for a Poisson distribu-
tion both terms are equal and exactly cancel each other.

The foraging policy summarised by Eq. (2) was
proposed without optimality claims (Iwasa et al., 1981).
The general optimal strategy (McNamara, 1982) is not
easily amenable to further manipulations. Although it is
possible to use dynamic programming to derive optimal
foraging strategies (Green, 1987), for the sake of mathe-
matical tractability we will adhere to the solution
proposed by Iwasa et al. (1981). Nevertheless, we will
show the following proposition.

ProrosITION 1. If Ar(n, t) <0 for all n and t the
optimal (long-term energy intake rate maximising)
strategy is to stay in the patch as long as the instantaneous
reward rate, R(n,t), is greater than the maximum
long-term intake rate attainable in the environment, y (i.e.,

QO=vy/Ain Eq. (2)).

Proof. We will follow the formalism developed by
McNamara (1982), who derived similar results. McNamara
suggested a possible definition for the instantaneous
reward rate in stochastic environments. Under the
random search assumption, it is shown in Appendix A
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that the reward rate for a forager that has obtained n
food items in a patch after a time ¢, R(n, t), is

R(n,t)=A-r(n,t). (4)

Consider a foraging strategy leading to a patch
residence time 7, which in general will be a random
variable. Consider also a forager that has spent a time ¢
in a patch and has consumed # food items and let a(n, )
be the number of items that the forager may be expected
to find between ¢ and patch departure, and b ,(n, ) the
expected time from ¢ to patch departure. Defining

gT(nn t):aT(na Z)_y'bT(n9 l)a (5)

the optimal policy is the one maximising g (McNamara,
1982). In particular, for a forager exploiting optimally a
patch, g is positive during patch exploitation and the
forager leaves the patch as soon as g =0.

From the definition of a(n, t), we have

ar(n, t)=E UTR(N(S), s)-ds|N(t)=n|, (6

where the random variable N(t) is the number of items
taken in the patch at time z.

(A) Proof that R(n, t)>y=-g*(n, t)>0

Consider the strategy “stay on the patch while
R(n, t) >y, leave when R(n, t) <y.” Let T be the leaving
time under this strategy. If R(n,t)>7y, then by con-
tinuity of R(n,t) in ¢, P(T>t| N(t)=n)>0. Since
R(N(s), s) >y for t <s < T, we have

ap(n, )= E { fTR(N(s), s)-ds | N(1) =n}

>y-EUtTds|N(t)=n}=y~bT(n,l). (7)

Thus g,(n, t) >0 and g*(n, t) =max, g.(n, t) >0.

(B) Proof that R(n, t)<y=g*(n, t)<0

Because r(n, t) is decreasing in ¢ for all n (Iwasa et al.,
1981), if Ar(n, t) <0 we have that R(N(s), s) < R(n, t) for
all s > ¢. Let 7 be any stopping time. Hence, if R(n, 1) <7y,

ar(n,t)=E [ fTR(N(s), §)-ds | N(1) =n}

t

<y-E“Tds|N(t)=n}=y-bT(n,t). (8)
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Thus g,(n, t) <0. Since this is true for all 7, g*(n, t) =
max, g,(n, t) <0. This concludes our proof.

COROLLARY. Equation (2) provides the optimal foraging
strategy for a Poisson (Stewart-Oaten, 1992) or binomial
distribution of number of food items per patch.

The simplicity of the foraging rule given by Eq. (2) has
allowed us to make predictions about the relationship
between environmental resource distributions and resource
harvest patterns that were difficult to derive from
McNamara’s (1987) and Green’s (1987) optimal foraging
policies. Moreover, Proposition 1 shows that this foraging
rule is actually optimal for a variety of food distributions.
As it was noted by Green (1987), however, this is not the
case for a negative binomial distribution of food items (in
this case, Ar(n, t) > 0 and the statement that R(N(s), s) <
R(n, t) for all s>t does not necessarily hold). Never-
theless, for the parameter values used by Green (1987) in
the numerical calculation of the optimal strategies with
negative binomial distribution of food items, it was still
the case that optimal patch residence time was an
increasing function of the number of items encountered
in the patch. When following the optimal strategy, hence,
foragers would on average stay longer in richer patches,
leading once more to positive density-dependent harvest-
ing. We can therefore tentatively conclude that the
qualitative predictions obtained in this paper would not
be modified when the optimal strategy is used instead of
Eq. (2) (when the two policies differ).

GENERAL CASE

From the above discussion and given that most
unimodal discrete distributions are well approximated by
some exponential distribution, it is tempting to conclude
that the relationship between the proportion of food
items taken from a patch by a Bayesian forager and the
number of items initially present in the patch will in
general be determined by the ¢%/u ratio of the distribution
of resources in the environment. This temptation is
strengthen by the following result (proven in Appendix B).

ProrosITION 2. Let p,(n, t) be the conditional prob-
ability that there are k food items left in the patch given
that n items have already been removed after searching for
a time t. Likewise, let p(n, t) and a*(n, t) be the mean and
variance of the p,(n, t) probability distribution. Then,

Sign[ 4r(n, t)] = Sign[o*(n, t) —pu(n, 1)]. 9)

As explained above, the sign of Ar(n, t) controls the
density dependence of the foraging strategy. It might
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FIG. 2. Proportion of food items captured (mean + SD over 1000
runs) as a function of the number of items initially in the patch for three
different quitting thresholds (Q). In all cases the habitat was composed
of patches having from 0 to 20 food items, each number being equally
likely to be found.

therefore look as if Proposition 2 proved the claim that the
a*/u ratio of the food distribution controlled the density
dependence of a Bayesian forager resource harvesting.
This is not so, however, since the sign of ¢(n, t) — u(n, )
needs not be constant for all # and ¢. In particular, this can
originate the “domed” relationships between proportion
of consumed items and initial density (Fig. 2) sometimes
encountered in host—parasitoid systems (see Hassell, 1982;
Lessells, 1985). In Fig. 2, the number of food items per
patch followed a uniform distribution: the environment
was composed of patches having from 0 to 20 food items,
each patch type being equally frequent. It can be seen that
the proportion of items consumed has a maximum peak at
intermediate resource densities. This peak occurs at higher
densities as the quitting threshold increases. Furthermore,
the overall proportion of items consumed is lower for
higher quitting threshold.

It is therefore clear that, given an appropriate distribu-
tion of resources, a Bayesian foraging strategy may lead
to virtually any pattern of resource harvesting. For dis-
tributions that are not well approximated by members of
the exponential family, a detail calculation of the mean
and variance of the p,(n, t) probability distribution, for
all n and ¢, must be conducted to predict the pattern of
resource harvesting.

LEARNING ABOUT THE
ENVIRONMENT

We have so far assumed that foragers have precise
information concerning the probability that a randomly
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chosen patch from their environment contains & food
items (for all values of k). We now study how Bayes’ rule
can be used to obtain this information. For this discus-
sion it will be useful to introduce another probability
density function, the discrete gamma distribution, given
by

—n* e >0
P, y(n)=4Cop (10)
0, n<0,
where C, ;is a normalisation constant,
C,p= > nle (11)
n=1

The gamma distribution depends on two parameters, o
and f, and is extremely flexible, since its mean and
variance can be independently chosen. In the continuous
gamma distribution, they are

u=% o= (12)

Equation (12) provides an excellent approximation for
the discrete distribution when o> 1, and we will use it
throughout. The great advantage of the gamma distribu-
tion is that it can approximate most plausible environ-
mental resource distributions by a judicious choice of a
and f. This allows us to use Bayes’ rule for learning the
properties of the environment: the forager starts with a
prior distribution for the parameters « and f, p(«, ) (in
essence, the forager “knows” the likelihood that the mean
and variance of the number of food items per patch are
u and 6>—Eq. 12). After exploiting a patch it can use the
information collected (n items taken in a time ¢) to
update its probability distribution. For examples col-
lecting 40 food items makes it extremely unlikely that the
mean number of food items per patch in the environment
is 10 if the variance is very small. The updated prob-
ability, p(a, B | n, t) is (Appendix C)

plo, B | n, 1)
+k
Z(nku) TP, pnt k) p(as B)
k20 . (13)
ff B n+k) eiA'k‘[P“'sﬁ’(n—i_k)
o k>0

x p(a, p) do dp'.
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The last piece of information relevant for our forager is
the optimal quitting threshold. As we have seen, when
Ar(n, t) =0, this is given by

Q=y/4. (14)

Figure 3 shows the dynamics of Bayesian learning in
some simulations. Foragers were placed in an environ-
ment where the number of food items per patch followed
a gamma distribution with parameters «° and $°. The
travel time between patches was random and exponen-
tially distributed. Foragers started the simulation with a
prior probability density function for « and f3, p(a, ) and
some estimate of the long term average intake rate, y,.
Upon arrival to a patch they computed the expected
values of « and f according to their prior distribution,

-]

pr=|| poptap)-dodp

a,

)- do- df
(15)

and while they exploited the patch they calculated r(n, t)
as if the number of food items per patch in their environ-
ment was gamma distributed with parameters a* and f*.
When r(n, t) fell below the quitting threshold calculated
as Q,=7v,/A, the forager left the patch and, while searching
for a new one, updated its probability density function
for « and p (Eq. (13)) and y, (merely calculated as total
intake over total time spent foraging). As it is always the
case in Bayesian processes, the newly updated probability
density function becomes the prior probability when a
new patch is encountered and the entire process is
iterated.

As a general rule, information about the mean number
of food items per patch was acquired faster than informa-
tion about the variance of the distribution. This is quite
remarkable if we consider that the foragers were not
estimating mean and variance directly but, rather, « and
f. Another pattern which emerges from these results is
that learning proceeds faster in poor than in rich environ-
ments. In rich environments the long term intake rate is
high and, as a consequence, the quitting threshold Q is
also high: foragers leave patches after taking very few
food items and can only poorly estimate the richness
of the visited patches. As a consequence, they gather
information about the environmental distribution of
resources very slowly. In very poor environments, on the
other hand, patches are exploited virtually to depletion.
When leaving a patch, foragers have very good estimates
of the number of items that were initially in the patch
and they can get a precise idea of the environmental
properties in very few visits (Fig. 3).
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FIG. 3. Estimated values of mean and variance of the gamma distribution of resources as a function of the number of patches visited. Three dif-
ferent resource distributions were simulated, all with an actual mean of 30 food items per patch and variances 120 (A), 30 (B), and 7.5 (C). For each
distribution three different values of overall resource richness were considered, each varying in the average travel time between patches: 0.02 (solid
curves), 0.2 (dotted curves), and 2.0 (dashed curves). Time units are arbitrarily chosen so that the searching efficiency (Eq. (1)) was 4 = 1. The prior
distribution for ¢ and b at the beginning of the simulation was r(a, b) = 5 if (a, b) was one of the intersection points of the solid-line grid presented
in (D) and r(a, b) =0 otherwise. The empty circles in (D) represent the three environments simulated. The integral in Eq. (8) was replaced by a sum-

mation over the 25 possible discrete combinations of a and b.

GENERAL DISCUSSION

As we have shown, a Bayesian learning foraging rule
can lead to markedly different density-dependent resource
harvesting relationships depending on the environmental
food distribution. When the difference between the mean
and variance of the conditional probability that there are
k food items left in a patch has the same sign no matter

how long the forager has been exploiting the patch and
how many food items it has removed, this sign governs
the pattern of resource harvesting: a variance larger than
the mean will lead to positive density dependent resource
harvesting, and vice versa, while equality of mean and
variance leads to density independence. When the sign of
the difference between mean and variance changes during
patch exploitation, however, the Bayesian strategy will
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result in a convex relationship between resource harvesting
and initial patch richness. It had previously been argued
that the domed relationships found in host—parasitoid
systems must be a consequence of physiological
constraints on the parasitoids, such as egg and time
limitations (Lessells, 1985). In view of our results, there
seems to be no need to postulate such constraints,
since a parsimonious imperfect information hypothesis
can make the same prediction in an appropriate
environment.

Although prey mortality is not uniquely determined
by predator behavior, a foraging strategy leading to a
type-3 functional response (Holling, 1965) can con-
tribute to stability because prey at higher densities
experience higher predation rate and therefore low
density patches may constitute prey refuges. This
aggregative response of foragers is well known to con-
tribute to prey population stability (Hassell, 1978).
When prey are distributed in a negative binomial fashion
or equivalent gamma distribution, as in the biologically
common clumped distribution (Southwood, 1978), the
harvesting behavior of a Bayesian forager produces an
aggregative response and therefore may constitute a
stabilizing factor. Although the foraging strategy sum-
marized by Eq. (2) is not optimal when the distribution
of prey-per-patch is negative binomial, the significance of
this result is enhanced by the fact that the optimal
strategy produces a similar density dependence pattern
of patch exploitation.

As we have seen, the Bayesian rule can be used to
acquire information about the patch currently being
exploited and about the environment as a whole. In par-
ticular, this ability would allow foragers to keep track of
fluctuating resource densities and to forage efficiently
throughout the seasons. It should be pointed out that,
despite the convergence of the simulations shown in
Fig. 3 to the real values of the environment, we have no
general proof of convergence. McNamara and Houston
(1985) propose another case of learning while foraging in
which convergence is assured, but in this more complex
setting such convergence is not guaranteed and it is
possible that, in some circumstances. foragers may
“learn” the wrong parameter values.

The flexibility of possible outcomes from a Bayesian
foraging strategy and the fact that it could, in principle,
explain the most commonly observed types of density-
dependent relationships are encouraging. They do not
prove, however, that most foragers use Bayesian
strategies, since other foraging rules might well lead to
similar predictions. The determination of the foraging
rules actually used remains an experimental task. Valone
and collaborators (Valone and Brown, 1989; Valone,
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1991, 1992) have already done some progress in this
direction, but the method they employ must be revised in
the light of our results. This method consists in offering
the foragers pairs of experimental patches of known food
density (Brown, 1988; Mitchell and Brown, 1990). From
the giving-up density observed it can be calculated the
density-dependent relationship of their foraging strategy
and whether they overuse or underuse rich patches
relative to poor ones. Since different foraging strategies
predict different patterns for these two quantities, the
foraging strategy that the species under study is using can
be inferred from them. The problem with this approach
lies in the fact that, as we have seen, a Bayesian foraging
strategy does not make, in itself, any prediction about
the type of relationship that must exist between initial
number of food items in the patch and giving-up density.
Studies like the ones by Valone and Brown (1989) or
Alonso et al. ( 1995) must therefore be complemented by
studies of food distribution. Nevertheless, we believe that
the approach of studying giving-up density by using
experimental patches is a promising one, as it has already
been demonstrated by a variety of studies (e.g., Brown,
1988; Kotler, 1992; Bowers et al. 1993: Brown et al,
1994: Hughes et al., 1994; Vasquez, 1994).

At this point, it could be argued that the spatial dis-
tribution of most species is well fitted by a negative
binomial distribution (or any gamma distribution with
parameter < 1; see Pielou, 1977; Southwood, 1978).
Since a Bayesian foraging strategy in this type of environ-
ment would result in a positively density-dependent rela-
tionship between the initial number of food items and
resource harvesting, it may be claimed that Bayesian
foraging strategies will typically result in positive density
dependency and that different relationships between the
initial number of food items and resource harvesting
imply that the forager is not using a Bayesian rule
(Valone and Brown, 1989; Valone 1991, 1992). The
weakness of this argument lies in the fact that the spatial
distribution of food items does not have so much of an
effect on the foraging rule as the distribution of number
of food items per patch. The difference between these two
cannot be overstressed. The model proposed by Iwasa et
al. (1981) and used throughout this paper assumes that
the forager lives in a patchy environment, and therefore
that the spatial distribution of food items is clumped. The
distribution of the numbers of food items per patch refers
to how many food items a forager is likely to find in any
one identifiable foraging patch, while the statement that
most species follow a negative binomial distribution
refers to their spatial distribution, regardless of the
variability of density between clumps (Pielou, 1977,
Southwood, 1978).
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APPENDIX A

The instantaneous intake rate in the patch (McNamara,

1982), R(n, t), can be defined as
R(n.1)= lim P(capture one préey within time 5). (Al)
s—>0*

Let p,(n, t) be the probability that there are & food items
left in the patch after consuming n of them in a time ¢ and
let P(d|k) be the probability of capturing at least one
item. From Eq. (1),

PO | k)= 1— ek o)
so that
_,—A-k-0o
R(l’l t)_ lim Zk)opk(n, t) (1 e )
o—>0t 5
=4. Z pe(n, t) -k (A3)
k=0

and, from the definition of r(n, ) (Iwasa et al., 1981),

r(in,t)= ) pi(n,t)-k, (A4)

k=0

equation (A3) can be rewritten as

R(n,t)=A-r(n,t). (AS)

APPENDIX B

We know from Iwasa et al. (1981) that the probability
that there are k food items left in the patch given that the
forager has consumed # items in a time ¢ is given by

k+n\ _,
pk+n< n >€ Ak

q+ny\ _ ..,
qu+n< >e Ata

qg=0

piln, t)= (A6)

and the expected number of food items remaining in the
patch is given by

k
z k'pk+n< :l—n> eiA'l'k

k=0

Q+n\ g
qu+)1< >eAttl

4>0 n

(A7)

r(n, t)=
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If we define

un, ty=r(n, t)="Y k-pin,t) (AR)
k=0
and
a*(n,t)= ) (k—pu(n, 1)) pyn, 1) (A9)
k>0
then, since
(k+1) pei(n, 1)
(n+1,1)= (A10)
P S0 @+ 1) pyoa(m 1)
we can write
Ar(n, t)y=r(n+1,t)—r(n, t)
= Z kpk(n+15t)_ Z q.pq(na t)
k=0 q¢=0
_Zk>ok(k+l) Pria(n, t)i Z g pqn )

CYeso (KA pean ) 5

1
_Zk'>0 (K" +1)-pr1(n, 1)

X< Z k(k+1)-pii(n,t)

k=0

Y WA D pe ) Y q-pn. r))

k>0 q=0
1
= k(k+1)- n,t)— k' +1
(S K Dp = B @)
ka'-%—l(”a l) Z Q'pq(na l)>9 (All)
q=0

where

cn,t)="Y, (K'+1)-pp1(n1)>0. (Al2)

kK'=0

Using the standard transformation

2 fk)y= 3 flk=1) (A13)

k=0 k=1

and noticing that

flk=0)=0= % flk)= % flk), (Al4)

k=1 k=0
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we can rewrite Eq. (A11) as

c(n, t)-Ar(n, 1) =Y, k(k—1)-p(n, 1)
k=0
- Z k' 'pk’(n’ t) z Q'Pq(”a t)
kK'=0 q=0
2
= k¥-pun, 1) <kaknt)>
k=0 k=0
- Z k'pk(nv l)
k=0
=a(n, t)>—u(n, t) (A15)
which proves Eq. (9).
APPENDIX C
Bayes formula tells us that
_P(XnY)
P(X|Y) =7 (A16)

where P(X | V) is the probability of event X given that Y
is true, P(X N Y) is the probability that both X and Y
are simultaneously true and P(Y) is the probability of
event Y. We are interested in the particular case:

X =the parameters of the gamma distribution that
best approximates the distribution of number of food
items per patch in the environment are o and .

Y = the forager has collected » food items from a patch
in a time ¢.

P(XnY)=P(a, fnn,t) is, hence, the probability of
taking n food items after a time ¢ in a gamma distributed
environment with parameters o and f, multiplied by the
probability that the environment is actually described by
o and f (i.e., the forager’s prior distribution):

P(a, fon, t)=P(n, t|a, f)-pla, f). (A17)
The first term of r.h.s. is
P(n,t|o, f)=) P, gk)-P(n,t]k), (AlS8)
k>=n

where P(n, t | k) is the probability of taking n food items
in a time ¢z from a patch initially containing k items
(k>=mn). Some algebra and Eq. (1) readily lead to

P(n,t| k):A"LefAJpI-#AA/'(n’ .

= (A19)

41

with f being a function of the number of food items
collected and the times required to collect individual
items. Substituting Egs. (A18) and (A19) into Eq. (A17)
gives

k!
S P pk) e

el (k—n)!

x A" . eA -f(n, i) .p(a’ ﬁ)

P, fn, t)=

(A20)

Since P(Y)= P(n, t) is only the integral of P(a, f N1, t)
over all possible values of « and £, we have (substituting
Eq. (A20) in Eq. (A16))

P, | n,t)=
kl
Y P fH) )A D p(a, )
k=n k' , (21)
P : —A-k-t
Ha“gn <O e

x A" _eA -f(n, i)'p(O(,, ﬁ/) 'dO(/ dﬂ/

which simplifies to Eq. (13).
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